publications

Below are selected methodological and theoretical contributions. For a complete list of publications, including applied work, see my Google Scholar profile.

Calibration for causal inference

2025

  1. Stabilized Inverse Probability Weighting via Isotonic Calibration
    Lars van der Laan, Ziming Lin, Marco Carone, and 1 more author
    In Proceedings of the 3rd Conference on Causal Learning and Reasoning (CLeaR), 2025
    To appear

2024

  1. Automatic doubly robust inference for linear functionals via calibrated debiased machine learning
    Lars van der Laan, Alex Luedtke, and Marco Carone
    arXiv preprint arXiv:2411.02771, 2024

2023

  1. Causal isotonic calibration for heterogeneous treatment effects
    Lars van der Laan, Ernesto Ulloa-Pérez, Marco Carone, and 1 more author
    In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023

Debiased and efficient estimation

2025

  1. Nonparametric Instrumental Variable Inference with Many Weak Instruments
    Lars van der Laan, Nathan Kallus, and Aurélien Bibaut
    2025
  2. Automatic Debiased Machine Learning for Smooth Functionals of Nonparametric M-Estimands
    Lars van der Laan, Aurelien Bibaut, Nathan Kallus, and 1 more author
    2025
  3. Automatic Double Reinforcement Learning in Semiparametric Markov Decision Processes with Applications to Long-Term Causal Inference
    Lars van der Laan, David Hubbard, Allen Tran, and 2 more authors
    2025

2024

  1. Combining T-learning and DR-learning: a framework for oracle-efficient estimation of causal contrasts
    Lars van der Laan, Marco Carone, and Alex Luedtke
    arXiv preprint arXiv:2402.01972, 2024

2023

  1. Adaptive debiased machine learning using data-driven model selection techniques
    Lars van der Laan, Marco Carone, Alex Luedtke, and 1 more author
    arXiv preprint arXiv:2307.12544, 2023

2021

  1. Higher order targeted maximum likelihood estimation
    Mark van der Laan, Zeyi Wang, and Lars van der Laan
    arXiv preprint arXiv:2101.06290, 2021

Causal inference methodology

2025

  1. Targeted maximum likelihood based estimation for longitudinal mediation analysis
    Zeyi Wang, Lars van der Laan, Maya Petersen, and 3 more authors
    Journal of Causal Inference, 2025

2024

  1. Adaptive-TMLE for the Average Treatment Effect based on Randomized Controlled Trial Augmented with Real-World Data
    Mark van der Laan, Sky Qiu, and Lars van der Laan
    arXiv preprint arXiv:2405.07186, 2024

2023

  1. Semiparametric logistic regression for inference on relative vaccine efficacy in case-only studies with informative missingness
    Lars van der Laan, and Peter B Gilbert
    arXiv preprint arXiv:2303.11462, 2023

2022

  1. Nonparametric estimation of the causal effect of a stochastic threshold-based intervention
    Lars van der Laan, Wenbo Zhang, and Peter B Gilbert
    Biometrics, 2022

Conformal prediction and predictive uncertainty

2025

  1. Generalized Venn and Venn-Abers Calibration with Applications in Conformal Prediction
    Lars van der Laan, and Ahmed Alaa
    In Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025
    To appear

2024

  1. Self-Calibrating Conformal Prediction
    Lars van der Laan, and Ahmed M. Alaa
    The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024

2023

  1. Estimating Uncertainty in Multimodal Foundation Models using Public Internet Data
    Shiladitya Dutta, Hongbo Wei, Lars van der Laan, and 1 more author
    arXiv preprint arXiv:2310.09926, 2023

Software and computational tools

2022

  1. hal9001: The scalable highly adaptive lasso
    Jeremy R Coyle, Nima S Hejazi, Rachael V Phillips, and 2 more authors
    2022
    R package version 0.4.2