Automatic doubly robust inference via calibration

Lars van der Laan, Alex Luedtke, Marco Carone

University of Washington, Department of Statistics

Summary

Objective: doubly robust inference

= Doubly robust estimators are widely used for estimating causal effects.

= Consistency requires only one nuisance function to be estimated well, but
asymptotic normality typically requires both. Inference is not doubly robust!

= To correct this mismatch, we propose calibrated DML, providing doubly
robust inference by calibrating nuisance estimators.

Calibrated DML Procedure
{Esﬁmate Nuisances% Calibrate % Debias}

Calibrating the nuisances before debiasing ensures doubly robust
asymptotic normality.

= |sotonic calibrated DML as special case: standard DML augmented with a
simple, tuning-free post-hoc calibration step using isotonic regression of
labels on cross-fitted nuisance estimates.

= Asymptotic normality for linear functionals holds if either the outcome
regression or Riesz representer (e.g., propensity score) is estimated well.

= A bootstrap procedure enables valid inference without extra nuisance estimation.

Properties of Calibrated DML

Estimator PS only OR only Both
Cons. Norm. Eff. Cons. Norm. Eff. Cons. Norm. Eff.
G-comp - - - v X X - — -
IPW v X X - — - — - -
AlIPW v X X |V X X |V v oo v
Cal. DML (ours) Vv v o vtV v oovrv v oo v

Properties of calibrated DML for ATE under correct specification of PS and/or OR.
PS: Propensity score. OR: Outcome regression. Cons.: Consistent. Norm.: Asym. normal. Eff.: Efficient.

Background: DML for linear functionals

= Qur goal: construct estimators that are doubly robust asymptotically normal.

= Valid inference—e.g., confidence intervals and hypothesis testing—even if only one
nuisance function is estimated well.

= Formally: /n(7, — m) LN N (0, o7) holds if any of the following:

n, — Hol] = 0p<n_1/4>
an — ol = op(n~ )

= ool - llewn — awll = 0p(n~"7?)
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Nuisance calibration implies doubly robust inference

= We discover a link between doubly robust inference and model calibration—a
technigue typically used in prediction and classification.

= A predictor/model f(-) is empirically calibrated with respect to a loss ¢(z, f) if
its empirical risk cannot be improved by any transformation of its predictions:

¢(Z;, f) = min 0(Z;,00 f).
;< f)=m Z( f)

Key Finding
Suppose nuisance estimators u,, and «,, are empirically calibrated:

=S Y — gl A WP = min S (= 0 (A, W)Y

1=1
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5 2 fonl e Wi = 2m(Zo o)} = min T3 {00 (A W) ~2m(Zi 00 o)
Then, DML is debiased and asymptotically normal even if one nuisance estima-
tor is poorly estimated.

Calibration improves stability and quality of nuisances

= Data structure: Z = (W, A,Y) ~ By, where W is a vector of covariates, A is a
treatment assignment, and Y is a real-valued outcome.

= Target parameter: a linear functional of the outcome regression.

Ty == Eolm(Z, o)) where (e, w) == EglY | A=a, W = w],

with p — m(z, p) linear. Forexample, the ATE corresponds to m(z, i) := (1, w) — (0, w).

= Key fact: there exists a Riesz representer o such that
0 = Eylag(A, W)Y ] (weighted average of the outcome).

Debiased Machine Learning (DML)

Obtain estimators u,, of uy and «,, of oy, and compute:

1 — ] —
i=1 i=1
DML is rate doubly robust:

(i) Consistent if ||, — ol = 0p(1) Or ||, — ag|| = 0,(1).

(i) Asymptotically normal if ||z, — pol| - [ — aol| = 0,(n=1/?).

= Calibration of the outcome regression implies unbiasedness:

Nn(a U}) _ Z?:l 1{:“7%(1427 Wz) — lun(aa ”LU)} Yj&
| D i1 W pn(Ai, Wi) = pnfa, w)}
ensuring that the regression predictions do not systematically over- or
under-estimate observed outcomes on average.

= Calibration of (inverse) propensity scores implies balance:

: Z Wn?‘;/i)f(ﬁn(wi)) = %Z f(m,(W;)) forall f,

ensuring that large inverse propensity weights meaningfully contribute to
balance, rather than inflating variance without reducing bias.

How to Calibrate?

dol: 10.48550/arXiv.2411.02771

= Post-hoc calibration adjusts a model f(-) by minimizing empirical loss ¢ over
a class of transformations applied to its outputs.

= Histogram binning: discretize the range of f(-), and within each bin, assign
the prediction that minimizes empirical risk. This learns a piecewise constant
transformation.

= [sotonic regression: a data-adaptive, tuning-free binning method that fits an
optimal monotone transformation of the model's predictions.
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Calibrated DML using isotonic calibration

Algorithm 1 Calibrated DML using isotonic calibration

Input: Dataset D, = {0, :i=1,...,n}; number J of cross-fitting splits
1: Partition D,, into folds ¢V, ... ¢\
fors=1,...,Jdo
Fit initial estimators g, s, a5 on £ .= D, \ C¥)
end for
Define j(i) := s for i € C'¥ (indicates fold membership)
Fit calibrators using isotonic regression with F;,, the class of monotone (1) functions:

n

fn € aj{ggﬂﬂ D (i = [ (Ai, W3)))°
€S iso i=1

(cross-fitting)

A Aol O A

n

gn € argmin > gl (A W) = 2m(Zi, g © a )]
9&Siso 1

7. Set calibrated estimators: puy, o := fn 0 pins, Q¢ = gn © Qs
8: Compute calibrated estimator:

T = > m(Zi, i1 ) + - D (A, Wi (Y; = gl (As, W)
i1 i=1

9: (Optional) Bootstrap empirical means in computation of f,,, g,, and 7 to construct Cls.
10: return calibrated DML estimate 7 and Cl based on influence function or bootstrap.

Theory for Calibrated DML

" Define errors: Ay i= g s — po, Doy = @ — Q.

n,j

= Fora summary map ¢ : W x A — R, define the projection
[I,f :=0r0¢p, where 0;:= argm@in |f— 00|
Note I1,.f (w, a) = Ey[f(W, A) | o(W, A) = p(w,a)]
Assumptions:

(i) (Both converge to something) ||pn.; — Loll + ||cn.; — @] = 0,(1) for some f, @
(ii) (At least one converges fast enough) ||u;, i — poll A ||, ; — col| = op(n~14)

n,]

(iii) (Error coupling for projections) ||(TL - — I ) Aa njll = Oplll ; — woll) and
|(May ;= May) Apnjll = Opllag, ; — aoll)

Doubly Robust Asymptotic Linearity

Under these conditions, we have 7% — 15 = P,xo + 0,(n~'/?), where:

XO(Z) — Lrn(za ﬂO) — Pom(z, ﬁO) T aO(av w){y - ﬁo(a7 UJ)]:

N

Usual IF at misspecified limits

+}{50 # ap} - sola, w){y — po(a, w)?f

-~

From representer misspecification

+{Ty # po} - (m(z, 1) — r0(a, w)ag(a, w))

v

From outcome misspecification

30<a7 ”LU) — HM()(O‘O _ 050)

ro(a, w) = Ha, (10 = o)

Benchmarking on semi-synthetic data

(Left) Evaluation of AIPW vs. calibrated DML for ATE on semi-synthetic benchmarks, with both outcome regression

and propensity scores estimated using gradient-boosted trees. (Right) Plots of bias and coverage in simulation studies.

Dataset Bias RMSE Coverage
caDML AIPW | caDML AIPW | caDML AIPW
ACIC-2017(18) [ 028 0.21] 058 070 064 027
ACIC-2017 (20) | 0.20 1.6 14 20 | 090 032 sa, . el
ACIC-2017 (22) | 0.035 0.004| 0.10 0.11 | 0.81 056 ¢ sz L e
ACIC-2017 (24) | 0.04 030 | 025 035| 090 032 Esimtor AP A T ¢ o
ACIC-2018 (Agegr)| 7.1 90 | 110 97 | 0.69 0.58
IHDP 013 013 | 046 046 | 057 0.57
Lalonde CPS 0.084 014 | 034 022 | 075 0.16 »
Lalonde PSID | 0.039 0.038 044 0.19 | 0.84 046 )
Twins 021 022 | 023 024 | 054 051
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