

Automatic doubly robust inference via calibration

University of Washington, Department of Statistics

Summary

- Doubly robust estimators are widely used for estimating causal effects.
- Consistency requires only one nuisance function to be estimated well, but asymptotic normality typically requires both. Inference is not doubly robust!
- To correct this mismatch, we propose *calibrated DML*, providing doubly robust inference by calibrating nuisance estimators.

Calibrated DML Procedure

Estimate Nuisances — Calibrate — Debias

Calibrating the nuisances before debiasing ensures doubly robust asymptotic normality.

- Isotonic calibrated DML as special case: standard DML augmented with a simple, tuning-free post-hoc calibration step using isotonic regression of labels on cross-fitted nuisance estimates.
- Asymptotic normality for linear functionals holds if either the outcome regression or Riesz representer (e.g., propensity score) is estimated well.
- A **bootstrap procedure** enables valid inference without extra nuisance estimation.

Properties of Calibrated DML

Estimator	PS only			OR only			Both		
	Cons.	Norm.	Eff.	Cons.	Norm.	Eff.	Cons.	Norm.	Eff.
G-comp	_	_	_	√	×	×	_	_	_
IPW	√	×	×	_	_	_	_	_	_
AIPW	√	×	×	√	×	X	√	\checkmark	\checkmark
Cal. DML (ours)	√	\checkmark	√ *	√	\checkmark	√ *	√	\checkmark	\checkmark

Background: DML for linear functionals

Properties of calibrated DML for ATE under correct specification of PS and/or OR.

PS: Propensity score. OR: Outcome regression. Cons.: Consistent. Norm.: Asym. normal. Eff.: Efficient.

- Data structure: $Z = (W, A, Y) \sim P_0$, where W is a vector of covariates, A is a treatment assignment, and Y is a real-valued outcome.
- Target parameter: a linear functional of the outcome regression.

$$\tau_0:=E_0[m(Z,\mu_0)]\quad\text{where}\quad \mu_0(a,w):=E_0[Y\mid A=a,W=w],$$
 with $\mu\mapsto m(z,\mu)$ linear. For example, the ATE corresponds to $m(z,\mu):=\mu(1,w)-\mu(0,w).$

• Key fact: there exists a Riesz representer α_0 such that

 $\tau_0 = E_0[\alpha_0(A, W)Y]$ (weighted average of the outcome).

Debiased Machine Learning (DML)

Obtain estimators μ_n of μ_0 and α_n of α_0 , and compute:

$$\frac{1}{n}\sum_{i=1}^{n}m(Z_{i},\mu_{n})+\frac{1}{n}\sum_{i=1}^{n}\alpha_{n}(A_{i},W_{i})\{Y_{i}-\mu_{n}(A_{i},W_{i})\}.$$

DML is rate doubly robust:

- (i) Consistent if $\|\mu_n \mu_0\| = o_p(1)$ or $\|\alpha_n \alpha_0\| = o_p(1)$.
- (ii) Asymptotically normal if $\|\mu_n \mu_0\| \cdot \|\alpha_n \alpha_0\| = o_p(n^{-1/2})$.

Objective: doubly robust inference

- Our goal: construct estimators that are doubly robust asymptotically normal.
- Valid inference—e.g., confidence intervals and hypothesis testing—even if only one nuisance function is estimated well.
- Formally: $\sqrt{n}(\tau_n \tau_0) \xrightarrow{d} N(0, \sigma_0^2)$ holds if any of the following:
- 1. $\|\mu_n \mu_0\| = o_p(n^{-1/4})$
- 2. $\|\alpha_n \alpha_0\| = o_p(n^{-1/4})$
- 3. $\|\mu_n \mu_0\| \cdot \|\alpha_n \alpha_0\| = o_p(n^{-1/2})$

Nuisance calibration implies doubly robust inference

- We discover a link between doubly robust inference and model calibration—a technique typically used in prediction and classification.
- A predictor/model $f(\cdot)$ is empirically calibrated with respect to a loss $\ell(z,f)$ if its empirical risk cannot be improved by any transformation of its predictions:

$$\sum_{i=1}^{n} \ell(Z_i, f) = \min_{\theta} \sum_{i=1}^{n} \ell(Z_i, \theta \circ f).$$

Key Finding

Suppose nuisance estimators μ_n and α_n are empirically calibrated:

$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i - \mu_n(A_i, W_i)\}^2 = \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \{Y_i - \theta(\mu_n(A_i, W_i))\}^2$$

$$\frac{1}{n} \sum_{i=1}^{n} \{\alpha_n(A_i, W_i)^2 - 2m(Z_i, \alpha_n)\} = \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \{\theta(\alpha_n(A_i, W_i))^2 - 2m(Z_i, \theta \circ \alpha_n)\}.$$

Then, DML is debiased and asymptotically normal even if one nuisance estimator is poorly estimated.

Calibration improves stability and quality of nuisances

• Calibration of the outcome regression implies unbiasedness:

$$\mu_n(a, w) = \frac{\sum_{i=1}^n \mathbf{1}\{\mu_n(A_i, W_i) = \mu_n(a, w)\} Y_i}{\sum_{i=1}^n \mathbf{1}\{\mu_n(A_i, W_i) = \mu_n(a, w)\}},$$

ensuring that the regression predictions do not systematically over- or under-estimate observed outcomes on average.

Calibration of (inverse) propensity scores implies balance:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{A_i}{\pi_n(W_i)} f(\pi_n(W_i)) = \frac{1}{n} \sum_{i=1}^{n} f(\pi_n(W_i)) \quad \text{for all } f,$$

ensuring that large inverse propensity weights meaningfully contribute to balance, rather than inflating variance without reducing bias.

How to Calibrate?

- Post-hoc calibration adjusts a model $f(\cdot)$ by minimizing empirical loss ℓ over a class of transformations applied to its outputs.
- **Histogram binning:** discretize the range of $f(\cdot)$, and within each bin, assign the prediction that minimizes empirical risk. This learns a piecewise constant transformation.
- Isotonic regression: a data-adaptive, tuning-free binning method that fits an optimal monotone transformation of the model's predictions.

Calibrated DML using isotonic calibration

Algorithm 1 Calibrated DML using isotonic calibration

Input: Dataset $\mathcal{D}_n = \{O_i : i = 1, ..., n\}$; number J of cross-fitting splits

- 1: Partition \mathcal{D}_n into folds $\mathcal{C}^{(1)},\ldots,\mathcal{C}^{(J)}$
- 2: **for** s = 1, ..., J **do**
- 3: Fit initial estimators $\mu_{n,s}, \alpha_{n,s}$ on $\mathcal{E}^{(s)} := \mathcal{D}_n \setminus \mathcal{C}^{(s)}$ (cross-fitting)
- 4: end for
- 5: Define j(i) := s for $i \in \mathcal{C}^{(s)}$ (indicates fold membership)
- 6: Fit calibrators using isotonic regression with \mathcal{F}_{iso} the class of monotone (\uparrow) functions:

$$f_n \in \underset{f \in \mathcal{F}_{\text{iso}}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - f(\mu_{n,j(i)}(A_i, W_i)))^2$$

$$g_n \in \underset{g \in \mathcal{F}_{\text{iso}}}{\operatorname{argmin}} \sum_{i=1}^{n} \left[g(\alpha_{n,j(i)}(A_i, W_i))^2 - 2 m(Z_i, g \circ \alpha_{n,j(i)})) \right]$$

- 7: Set calibrated estimators: $\mu_{n,s}^* := f_n \circ \mu_{n,s}, \ \alpha_{n,s}^* := g_n \circ \alpha_{n,s}$
- 8: Compute calibrated estimator:

$$\tau_n^* := \frac{1}{n} \sum_{i=1}^n m(Z_i, \mu_{n,j(i)}^*) + \frac{1}{n} \sum_{i=1}^n \alpha_{n,j(i)}^* (A_i, W_i) (Y_i - \mu_{n,j(i)}^* (A_i, W_i))$$

9: **(Optional)** Bootstrap empirical means in computation of f_n , g_n , and τ_n^* to construct CIs. 10: **return** calibrated DML estimate τ_n^* and CI based on influence function or bootstrap.

Theory for Calibrated DML

- Define errors: $\Delta_{\mu,n,j} := \mu_{n,j}^* \mu_0, \ \Delta_{\alpha,n,j} := \alpha_{n,j}^* \alpha_0.$
- For a summary map $\varphi: \mathcal{W} \times \mathcal{A} \to \mathbb{R}$, define the projection

$$\Pi_{\varphi}f:=\theta_f\circ \varphi, \quad \text{where} \quad \theta_f:=\arg\min_{\theta}\|f-\theta\circ \varphi\|.$$

Note
$$\Pi_{\varphi}f(w,a) = E_0[f(W,A) \mid \varphi(W,A) = \varphi(w,a)].$$

Assumptions:

- (i) (Both converge to something) $\|\mu_{n,j} \overline{\mu}_0\| + \|\alpha_{n,j} \overline{\alpha}_0\| = o_p(1)$ for some $\overline{\mu}_0, \overline{\alpha}_0$
- (ii) (At least one converges fast enough) $\|\mu_{n,j}^* \mu_0\| \wedge \|\alpha_{n,j}^* \alpha_0\| = o_p(n^{-1/4})$
- (iii) (Error coupling for projections) $\|(\Pi_{\mu_{n,j}^*} \Pi_{\mu_0})\Delta_{\alpha,n,j}\| = O_p(\|\mu_{n,j}^* \mu_0\|)$ and $\|(\Pi_{\alpha_{n,j}^*} \Pi_{\alpha_0})\Delta_{\mu,n,j}\| = O_p(\|\alpha_{n,j}^* \alpha_0\|)$

Doubly Robust Asymptotic Linearity

Under these conditions, we have
$$\tau_n^* - \tau_0 = P_n \chi_0 + o_p(n^{-1/2})$$
, where:
$$\chi_0(z) = \underbrace{m(z,\overline{\mu}_0) - P_0 m(z,\overline{\mu}_0) + \overline{\alpha}_0(a,w) \{y - \overline{\mu}_0(a,w)\}}_{\text{Usual IF at misspecified limits}} + \underbrace{\mathbf{1}\{\overline{\alpha}_0 \neq \alpha_0\} \cdot s_0(a,w) \{y - \mu_0(a,w)\}}_{\text{From representer misspecification}} s_0(a,w) = \Pi_{\mu_0}(\alpha_0 - \overline{\alpha}_0) + \underbrace{\mathbf{1}\{\overline{\mu}_0 \neq \mu_0\} \cdot (m(z,r_0) - r_0(a,w)\alpha_0(a,w))}_{\text{From outcome misspecification}} r_0(a,w) = \Pi_{\alpha_0}(\mu_0 - \overline{\mu}_0)$$

Benchmarking on semi-synthetic data

(Left) Evaluation of AIPW vs. calibrated DML for ATE on semi-synthetic benchmarks, with both outcome regression and propensity scores estimated using gradient-boosted trees. (Right) Plots of bias and coverage in simulation studies.

Dataset	Bia	S	RM:	SE	Coverage		
	calDML	AIPW	calDML	AIPW	calDML	AIPV	
ACIC-2017 (18)	0.28	0.21	0.58	0.70	0.64	0.27	
ACIC-2017 (20)	0.20	1.6	1.4	2.0	0.90	0.32	
ACIC-2017 (22)	0.035	0.004	0.10	0.11	0.81	0.56	
ACIC-2017 (24)	0.04	0.30	0.25	0.35	0.90	0.32	
ACIC-2018 (Aggr)	7.1	9.0	110	97	0.69	0.58	
IHDP	0.13	0.13	0.46	0.46	0.57	0.57	
Lalonde CPS	0.084	0.14	0.34	0.22	0.75	0.16	
Lalonde PSID	0.039	0.038	0.44	0.19	0.84	0.46	
Twins	0.21	0.22	0.23	0.24	0.54	0.52	

