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Motivation 
sequential causal inference 

• Many real-world decisions are made sequentially over time 

• Daily movie recommendations 


• Treatment dosage by visit


• Questions in sequential causal inference: 

• What is the optimal treatment or action to take at each time?


• What is the long-term causal effect of a given policy?


• Reinforcement Learning: a framework for sequential decision-making 
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Causal model

• We assume data follows a Markov decision process (MDP) 

• At each time , decision-maker is


• given state  summarizing current context


• takes action   based on 


• receives outcome   (cost/reward)


• transitions to next state  based on 

t

St

At St

Yt

St+1 (St, At, Yt)

A0 A1

S0 S1 S2Y0 Y1



• Action taken, outcome received, and state transition don’t depend directly on time 

• That is, the following distributions are time-invariant:

Time-homogeneity of MDP

(At ∣ St = s) (Yt ∣ At = a, St = s) (St+1 ∣ Yt = y, At = a, St = s)
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Sequential process obtained by composing single time-step transitions

Data-generating policy Reward distribution State transition distribution



Objective: Long-term policy evaluation

• Short-term data : 


• Policy  : probability of taking action  in state  is 


• Our goal : learn (long-term) policy value for discount factor : 

•  is a “time horizon” that controls how far into the future we look.

{(S0,i, A0,i, Y0,i, S1,i) ∼ P0}n
i=1

π a s π(a ∣ s)

γ ∈ [0,1]

γ

ψ0 = 𝔼π [
∞

∑
t=0

γtYt(π)] Expectation of discounted cumulative reward 

under counterfactual MDP that follows  π
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• The Q-function is  

• Policy value  equals expectation , where


• Q-function identified by Bellman equation:

ψ0 E0[Vπ(q0)(S0)]

Identification via Q-function

q0(a, s) = 𝔼π [
∞

∑
t=0

γtYt(π) ∣ A0 = a, S0 = s]

q0(a, s) = EP0 [Y0 + γVπ(q0)(S1) ∣ A0 = a, S0 = s]

Vπ(q0)(s) = ∫ q0(a, s)π(a ∣ s)da

reward of action a
In state ,  
the value of action  
and then following   

s
a
π

value from following  starting from π S1+= × discount rate



• DRL provides efficient nonparametric inference for policy value (Kallus et al., 2020)


• Doubly-robust AIPW-style estimator:

Double reinforcement learning

1
n

n

∑
i=1

Vπ(qn)(S0,i)

plug-in estimator

+
1
n

n

∑
i=1

dn(S0,i, A0,i){Y0,i + γVπ(qn)(S1,i) − qn(A0,i, S0,i)}

augmentation term

where qn estimates q0 and dn estimates density ratio d0

Bellman residual for qnWeights
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Overlap challenges in DRL

• Requires existence and finite variance of density ratio:

d0(a, s) :=
π(a ∣ s)

P0(A0 = a ∣ S0 = s)

overlap between target
and behavior policy

×
∞

∑
t=0

γt dℙπ(St = s)
dP0(S0 = s)

overlap between future
and initial state distributions
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Need to impute  from .(S1, ⋅ ) (S0, Y0)

A0S0 Y0

Y0(π)

Need to impute  from  Y0(π) Y0

Mehrabi, Mohammad, and Stefan Wager. "Off-policy evaluation in markov decision processes under weak distributional overlap." arXiv preprint arXiv:2402.08201 (2024).



• Violated when either time or the policy  induces states that are rare or unseen 

• Why we care?  

• Leads to unstable and high variance estimators


• May cause lack of identification altogether


• Even a concern in randomized experiments 
since  is post-treatment

π

S1

Intertemporal overlap S0 S1Y0 Y1

Mehrabi, Mohammad, and Stefan Wager. "Off-policy evaluation in markov decision processes under weak distributional overlap." arXiv preprint arXiv:2402.08201 (2024).
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How to relax overlap assumptions?

• Semiparametric restrictions on Q-function reduce overlap requirements. 

• Allows for extrapolation of outcomes for rare or unseen states


• Possible semiparametric models:

S0 S1Y0 Y1

q0(A0, S0) = φ(A0, S0)⊤β
Linear model

q0(1,S0) − q0(0,S0) = β⊤S0

Partially linear model

q0(A0, S0) = f0(A0, X) + g0(A0, Y) + h0(A0, Z)
Additive model with S0 = (X, Y, Z) Dimension-reduction 

q0(A0, S0) = q̃0(φ(A0, S0))



Our contributions

1. DRL with semiparametric restrictions on Q-function  

• Automatic debiasing procedure applies to any linear functional


• Model-robust inference on best approximation (e.g., BLP)


2. Model misspecification induces only second-order bias 

• Valid inference with sieves and data-driven model-selection


• Reduce variance without sacrificing nonparametric validity 


3. Debiased plug-in estimation via Bellman calibration (remainder of talk)

q0



Challenge of nuisance estimation in DRL

• DRL requires estimation of Q-function  and density ratio  

• Q-function is “easy” to estimate: 

• Bellman equation says that  


• If we knew , we could regress 

q0 d0

q0(A0, S0) = E[Y0 + γVπ(q0)(S1) ∣ A0, S0]

q0 Y0 + γVπ(q0)(S1)  on  (A0, S0)

Fitted Q-iteration

update q(k+1)
n by regressing Y0 + γVπ(q(k)

n )(S1) on (A0, S0)
2. Iterate until convergence:
1. k=0; Initialize ;q(0)

n = 0

 increment: k = k + 1
⋅⋅



Challenge of nuisance estimation in DRL

• Debiasing requires estimation of density ratio 


• Challenging: need to solve minimax problem


• Issues:

d0

d0 = arg min
f∈ℱ

max
g∈𝒢

L0( f, g)

Computationally expensive 

Unstable optimization

Bias due to model misspecification



• Can we avoid estimation of density ratio altogether? 

• Yes, if we calibrate the Q-function estimator


• Key result:  Bellman calibration suffices for debiasing

qn(a, s) ≈ E[Y0 + γVπ(qn)(S1) ∣ qn(A0, S0) = qn(a, s)]

Our solution

If  solves bellman equation with  as 1D dimension reduction:qn qn(a, s)

Then, the plug-in estimator  is asymptotically normal
1
n

n

∑
i=1

Vπ(qn)(S0,i)



Isotonic Bellman calibration

• We propose isotonic Bellman calibration, extending isotonic calibration to MDPs. 

Machine Learning

qn

Bellman calibration

gn ∘ qn

Plug-in

1
n

n

∑
i=1

Vπ(gn ∘ qn)(S0,i)

Fit Q-function q0 Estimator

Y0,i + γVπ(qn)(S1,i)
Regress

on
qn(A0,i, S0,i)

using isotonic regression

Post-hoc 
1D regression (cheap compute) 
No tuning 
One line of code 



Properties of Bellman-calibrated plug-in

• Semiparametric efficient under model with  as 1D dimension reduction of 


• Asymptotically linear and superefficient under nonparametric model  

• Relaxes overlap condition to finite variance of 1D density ratio:

q0(A0, S0) (A0, S0)

dq0
(a, s) :=

∞

∑
t=0

γt dℙπ(q0(At, St) = q0(a, s))
dP0(q0(A0, S0) = q0(a, s))

1
n

n

∑
i=1

Vπ(gn ∘ qn)(S0,i)

Estimator 



Conclusion

• DRL faces two key challenges: 

1. Requires Inter-temporal overlap across states, on top of treatment overlap 


2. Debiasing requires min-max estimation of density ratio nuisance


• Our solutions: 

• Semiparametric extension of DRL to relax overlap


• Bellman calibration of Q-function debiases without nuisance estimation


• Note: Bellman-calibration tackles both overlap and nuisance estimation challenges.
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