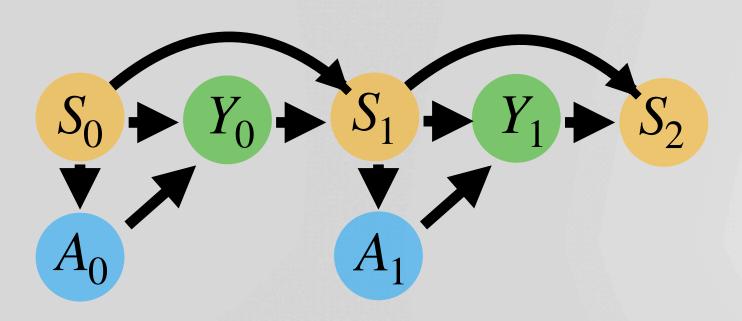
Double Reinforcement Learning in Semiparametric Markov Decision Processes

Lars van der Laan

Joint with Aurelien Bibaut, David Hubbard, Allen Tran, and Nathan Kallus ACIC 2025

Motivation sequential causal inference



- Many real-world decisions are made sequentially over time
 - Daily movie recommendations
 - Treatment dosage by visit
- Questions in sequential causal inference:
 - What is the optimal treatment or action to take at each time?
 - What is the long-term causal effect of a given policy?
- Reinforcement Learning: a framework for sequential decision-making

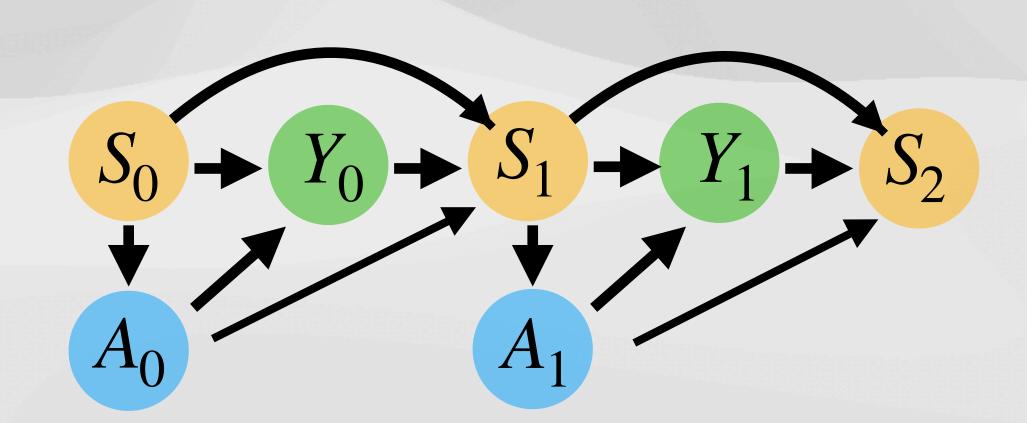
$$A_{t} := f_{A}(S_{t}, U_{A_{t}})$$

$$Y_{t} := f_{Y}(A_{t}, S_{t}, U_{Y_{t}})$$

$$S_{t+1} := f_{S}(Y_{t}, A_{t}, S_{t}, U_{S_{t+1}})$$

Causal model

- We assume data follows a <u>Markov decision process</u> (MDP)
- At each time t, decision-maker is
 - given state S_t summarizing current context
 - takes $\underline{\operatorname{action}}\,A_t$ based on S_t
 - receives outcome Y_t (cost/reward)
 - transitions to next state S_{t+1} based on (S_t, A_t, Y_t)

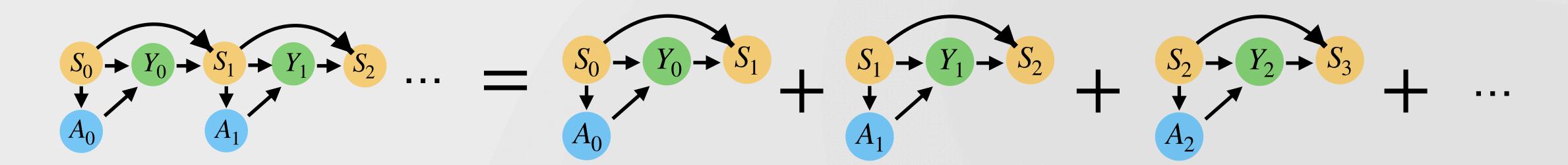


Time-homogeneity of MDP

· Action taken, outcome received, and state transition don't depend directly on time

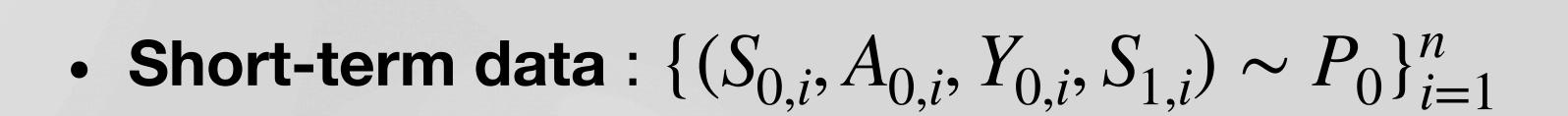
That is, the following distributions are time-invariant:

Data-generating policy Reward distribution State transition distribution
$$(A_t \mid S_t = s) \qquad (Y_t \mid A_t = a, S_t = s) \qquad (S_{t+1} \mid Y_t = y, A_t = a, S_t = s)$$



Sequential process obtained by composing single time-step transitions

Objective: Long-term policy evaluation





- **Policy** π : probability of taking action a in state s is $\pi(a \mid s)$
- Our goal: learn (long-term) policy value for discount factor $\gamma \in [0,1]$:

$$\psi_0 = \mathbb{E}_\pi \left[\sum_{t=0}^\infty \gamma^t Y_t(\pi) \right] \qquad \text{Expectation of discounted cumulative reward under counterfactual MDP that follows } \pi$$

• γ is a "time horizon" that controls how far into the future we look.

Identification via Q-function

• The Q-function is
$$\left| q_0(a,s) = \mathbb{E}_\pi \left[\sum_{t=0}^\infty \gamma^t Y_t(\pi) \mid A_0 = a, S_0 = s \right] \right|$$

• Policy value ψ_0 equals expectation $E_0[V^{\pi}(q_0)(S_0)]$, where

$$V^{\pi}(q_0)(s) = \int q_0(a, s) \pi(a \mid s) da$$

Q-function identified by Bellman equation:

$$q_0(a,s) = E_{P_0} \left[Y_0 + \gamma V^{\pi}(q_0)(S_1) \mid A_0 = a, S_0 = s \right]$$

In state s, the value of action a = reward of action a + value from following π starting from S_1 × discount rate and then following π

Double reinforcement learning

- DRL provides efficient nonparametric inference for policy value (Kallus et al., 2020)
- Doubly-robust AIPW-style estimator:

$$\frac{1}{n}\sum_{i=1}^{n}V^{\pi}(q_{n})(S_{0,i}) + \frac{1}{n}\sum_{i=1}^{n}d_{n}(S_{0,i},A_{0,i})\big\{Y_{0,i} + \gamma V^{\pi}(q_{n})(S_{1,i}) - q_{n}(A_{0,i},S_{0,i})\big\}$$
 plug-in estimator augmentation term

where q_n estimates q_0 and d_n estimates density ratio d_0

Overlap challenges in DRL

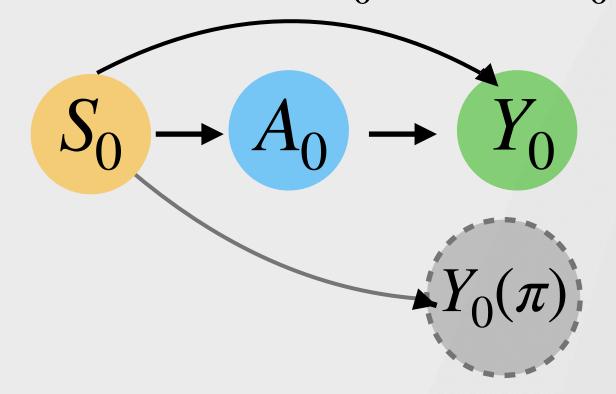
Requires existence and <u>finite variance</u> of density ratio:

$$d_0(a,s) := \frac{\pi(a \mid s)}{P_0(A_0 = a \mid S_0 = s)} \times \sum_{t=0}^{\infty} \gamma^t \frac{d\mathbb{P}^{\pi}(S_t = s)}{dP_0(S_0 = s)}$$

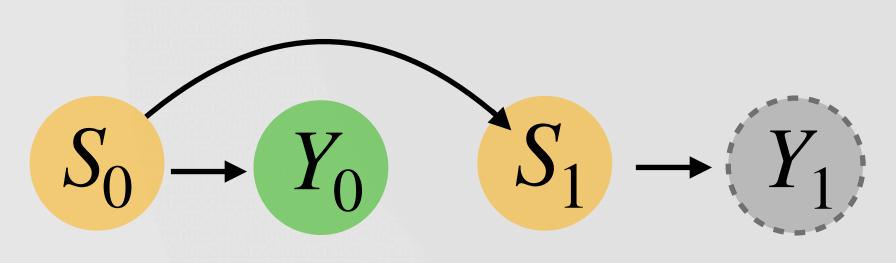
overlap between target and behavior policy

overlap between future and initial state distributions

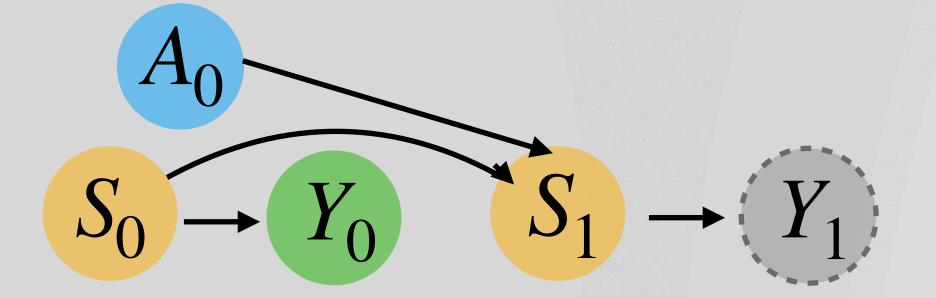
Need to impute $Y_0(\pi)$ from Y_0



Need to impute (S_1, \cdot) from (S_0, Y_0) .

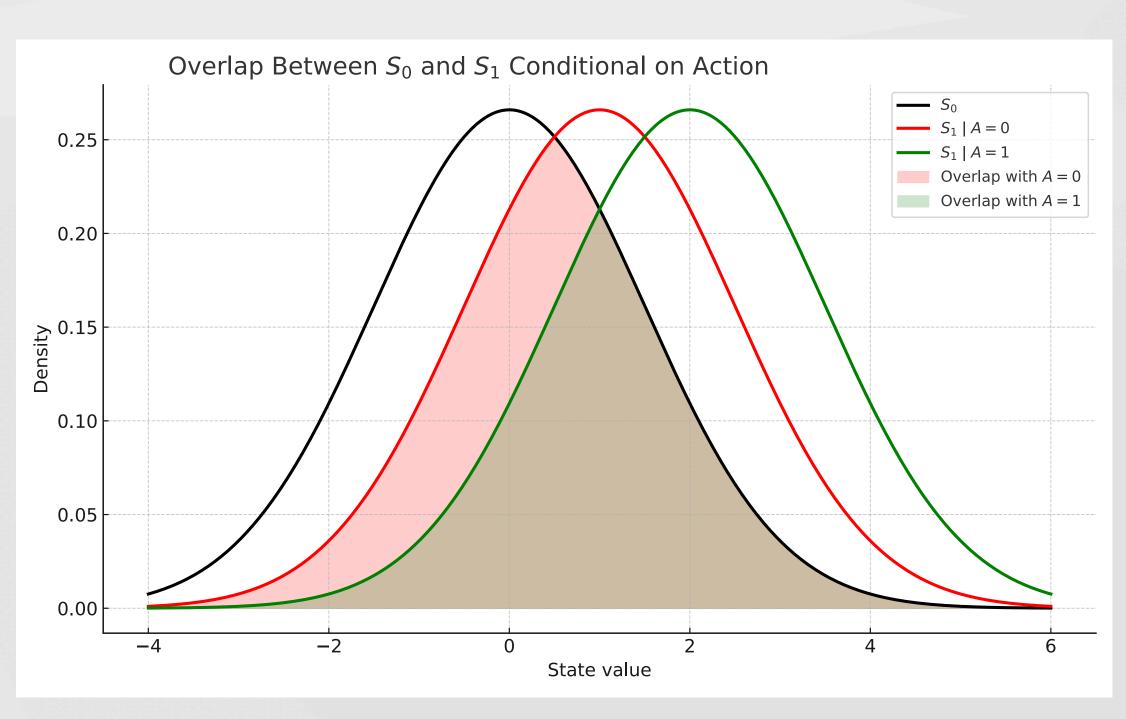


Intertemporal overlap

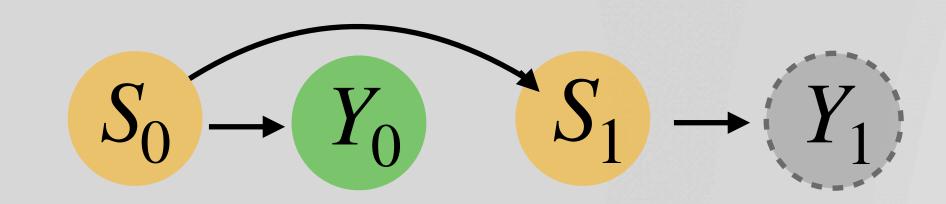


- Violated when either time or the policy π induces states that are rare or unseen
- Why we care?
 - Leads to unstable and high variance estimators
 - May cause lack of identification altogether

• Even a concern in randomized experiments since S_1 is post-treatment

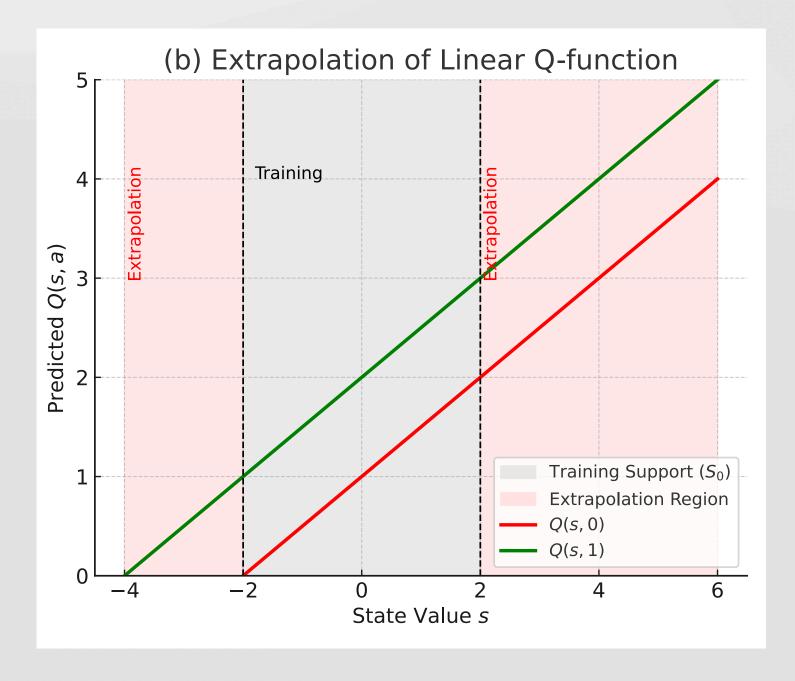


How to relax overlap assumptions?



- Semiparametric restrictions on Q-function reduce overlap requirements.
 - Allows for extrapolation of outcomes for rare or unseen states
- Possible semiparametric models:

$\begin{array}{ll} & \underline{\text{Linear model}} & \underline{\text{Partially linear model}} \\ & q_0(A_0,S_0) = \varphi(A_0,S_0)^\top\beta & q_0(1,S_0) - q_0(0,S_0) = \beta^\top S_0 \\ \\ & \underline{\text{Additive model with } S_0 = (X,Y,Z)} & \underline{\text{Dimension-reduction}} \\ & q_0(A_0,S_0) = f_0(A_0,X) + g_0(A_0,Y) + h_0(A_0,Z) & q_0(A_0,S_0) = \widetilde{q}_0(\varphi(A_0,S_0)) \end{array}$



Our contributions

- 1. DRL with semiparametric restrictions on Q-function q_{0}
 - Automatic debiasing procedure applies to any linear functional
 - Model-robust inference on best approximation (e.g., BLP)
- 2. Model misspecification induces only second-order bias
 - Valid inference with sieves and data-driven model-selection
 - Reduce variance without sacrificing nonparametric validity
- 3. Debiased plug-in estimation via Bellman calibration (remainder of talk)

Challenge of nuisance estimation in DRL

- DRL requires estimation of Q-function q_0 and density ratio d_0
- Q-function is "easy" to estimate:
 - Bellman equation says that $q_0(A_0, S_0) = E[Y_0 + \gamma V^{\pi}(q_0)(S_1) \mid A_0, S_0]$
 - If we knew q_0 , we could regress $Y_0 + \gamma V^\pi(q_0)(S_1)$ on (A_0, S_0)

Fitted Q-iteration

- 1. k=0; Initialize $q_n^{(0)} = 0$;
- 2. Iterate until convergence:
 - update $q_n^{(k+1)}$ by regressing $Y_0 + \gamma V^{\pi}(q_n^{(k)})(S_1)$ on (A_0, S_0)
 - increment: k = k + 1

Challenge of nuisance estimation in DRL

- Debiasing requires estimation of density ratio d_{0}
- Challenging: need to solve minimax problem

$$d_0 = \arg\min_{f \in \mathscr{F}} \min_{g \in \mathscr{G}} L_0(f, g)$$

Issues:

Computationally expensive

Unstable optimization

Bias due to model misspecification

Our solution

- Can we avoid estimation of density ratio altogether?
 - Yes, if we calibrate the Q-function estimator

Key result: <u>Bellman calibration</u> suffices for debiasing

If q_n solves bellman equation with $q_n(a, s)$ as 1D dimension reduction:

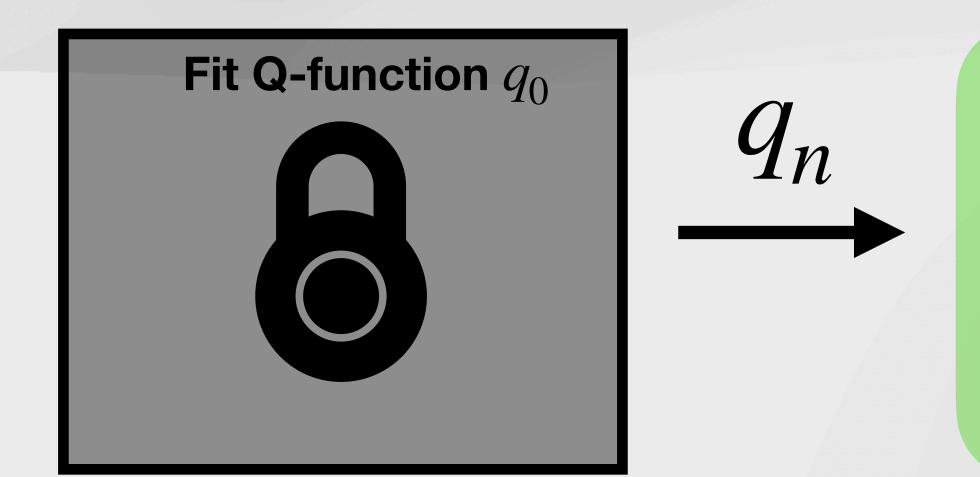
$$q_n(a,s) \approx E[Y_0 + \gamma V^{\pi}(q_n)(S_1) \mid q_n(A_0, S_0) = q_n(a,s)]$$

Then, the plug-in estimator $\frac{1}{n}\sum_{i=1}^n V^\pi(q_n)(S_{0,i})$ is asymptotically normal

Isotonic Bellman calibration

• We propose isotonic Bellman calibration, extending isotonic calibration to MDPs.

Machine Learning



Bellman calibration

Regress

$$Y_{0,i} + \gamma V^{\pi}(q_n)(S_{1,i})$$
 on $q_n(A_{0,i}, S_{0,i})$

using isotonic regression

 $g_n \circ q_n$

Plug-in

Estimator

$$\frac{1}{n} \sum_{i=1}^{n} V^{\pi}(g_n \circ q_n)(S_{0,i})$$

Post-hoc 1D regression (cheap compute) No tuning One line of code

Properties of Bellman-calibrated plug-in

Estimator

$$\frac{1}{n} \sum_{i=1}^{n} V^{\pi}(g_n \circ q_n)(S_{0,i})$$

- Semiparametric efficient under model with $q_0(A_0,S_0)$ as 1D dimension reduction of (A_0,S_0)
- Asymptotically linear and superefficient under nonparametric model
- Relaxes overlap condition to finite variance of 1D density ratio:

$$d_{q_0}(a,s) := \sum_{t=0}^{\infty} \gamma^t \frac{d\mathbb{P}^{\pi}(q_0(A_t, S_t) = q_0(a,s))}{dP_0(q_0(A_0, S_0) = q_0(a,s))}$$

Conclusion

DRL faces two key challenges:

- 1. Requires Inter-temporal overlap across states, on top of treatment overlap
- 2. Debiasing requires min-max estimation of density ratio nuisance

Our solutions:

- Semiparametric extension of DRL to relax overlap
- Bellman calibration of Q-function debiases without nuisance estimation
- Note: Bellman-calibration tackles both overlap and nuisance estimation challenges.